
5. Arrays, Pointers and Strings

7th September

IIT Kanpur

C Course, Programming club, Fall 2008 1

Arrays

• An Array is a collection of variables of the
same type that are referred to through a
common name.

• Declaration

type var_name[size]

e.g

C Course, Programming club, Fall 2008 2

int A[6];
double d[15];

Array Initialization

After declaration, array contains some garbage
value.

Static initialization

Run time initialization

C Course, Programming club, Fall 2008 3

int month_days[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

int i;
int A[6];
for(i = 0; i < 6; i++)

A[i] = 6 - i;

Memory addresses

• Memory is divided up into one byte
pieces individually addressed.
- minimum data you can request
from the memory is 1 byte

• Each byte has an address.
for a 32 bit processor, addressable
memory is 232 bytes. To uniquely
identify each of the accessible byte
you need log2232 = 32 bits

0A 0x00001234

23 0x00001235

6C 0x00001236

1D 0x00001237

‘W’ 0x00001238

‘o’ 0x00001239

‘w’ 0x0000123A

‘\0’ 0x0000123B

. .

. .

. .

0x24680975

0x24680976

0x24680977

0x24680978
C Course, Programming club, Fall 2008 4

Array - Accessing an element

int A[6];

6 elements of 4 bytes each,
total size = 6 x 4 bytes = 24 bytes

Read an element

Write to an element

{program: array_average.c}

A[0] A[1] A[2] A[3] A[4] A[5]

0x1000 0x1004 0x1008 0x1012 0x1016 0x1020

6 5 4 3 2 1

C Course, Programming club, Fall 2008 5

int tmp = A[2];

A[3] = 5;

Strings in C
• No “Strings” keyword

• A string is an array of characters.

OR

C Course, Programming club, Fall 2008 6

char string*+ = “hello world”;
char *string = “hello world”;

Significance of NULL character ‘\0’

• Compiler has to know where the string ends
• ‘\0’ denotes the end of string
{program: hello.c}

Some more characters (do $man ascii):
‘\n’ = new line, ‘\t’ = horizontal tab, ‘\v’ = vertical

tab, ‘\r’ = carriage return
‘A’ = 0x41, ‘a’ = 0x61, ‘\0’ = 0x00

C Course, Programming club, Fall 2008 7

char string*+ = “hello world”;
printf(“%s”, string);

Pointers in C

• A char pointer points to a single byte.
• An int pointer points to first of the four bytes.
• A pointer itself has an address where it is stored in the

memory. Pointers are usually four bytes.

• * is called the dereference operator
• *p gives the value pointed by p

4 i
p

• & (ampersand) is called the reference operator
• &i returns the address of variable i

C Course, Programming club, Fall 2008 8

int *p;  int* p;

int i = 4;
p = &i;

More about pointers

int x = 1, y = 2, z[10];

int *ip; /* A pointer to an int */

ip = &x; /* Address of x */

y = *ip; /* Content of ip */

ip = 0; / Clear where ip points */

ip = &z[0]; /* Address of first element
of z */

{program: pointer.c}

C Course, Programming club, Fall 2008 9

Pointer Arithmetic

• A 32-bit system has 32 bit address space.

• To store any address, 32 bits are required.

• Pointer arithmetic : p+1 gives the next
memory location assuming cells are of the
same type as the base type of p.

C Course, Programming club, Fall 2008 10

Pointer arithmetic: Valid operations

• pointer +/- integer  pointer

• pointer - pointer  integer

• pointer <any operator> pointer  invalid

– pointer +/- pointer  invalid

C Course, Programming club, Fall 2008 11

Pointer Arithmetic: Example

int *p, x = 20;
p = &x;
printf("p = %p\n", p);
printf("p+1 = %p\n", (int*)p+1);
printf("p+1 = %p\n", (char*)p+1);
printf("p+1 = %p\n", (float*)p+1);
printf("p+1 = %p\n", (double*)p+1);
Sample output:
p = 0022FF70
p+1 = 0022FF74
p+1 = 0022FF71
p+1 = 0022FF74
p+1 = 0022FF78
{program: pointer_arithmetic.c}

C Course, Programming club, Fall 2008 12

Pointers and arrays

• Pointers and arrays are tightly coupled.

char a*+ = “Hello World”;

char *p = &a[0];

C Course, Programming club, Fall 2008 13

Pointers and function arguments

• Functions only receive copies of the variables passed to
them.

{program: swap_attempt_1.c}
• A function needs to know the address of a variable if it

is to affect the original variable
{program: swap_attempt_2.c}
• Large items like strings or arrays cannot be passed to

functions either.

• What is passed is the address of “hello world\n” in the
memory.

C Course, Programming club, Fall 2008 14

printf(“hello world\n”);

2-Dimensional Arrays (Array of arrays)

int d[3][2];

Access the point 1, 2 of the array:
d[1][2]

Initialize (without loops):

int d[3][2] = {{1, 2}, {4, 5}, {7, 8}};

C Course, Programming club, Fall 2008 15

More about 2-Dimensional arrays

d[0][0] d[0][1] d[0][2] d[0][3]

d[1][0] d[1][1] d[1][2] d[1][3]

d[2][0] d[2][1] d[2][2] d[2][3]

A Multidimensional array is stored in a row major format.
A two dimensional case:
 next memory element to d[0][3] is d[1][0]

What about memory addresses sequence of a three
dimensional array?
 next memory element to t[0][0][0] is t[0][0][1]

C Course, Programming club, Fall 2008 16

